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Abstract

This paper presents a theoretical analysis of instantaneous rotation of elliptical rigid inclusions hosted in a foliated matrix under bulk

tensile stress. The foliated matrix is modelled with orthotropic elastic rheology, considering two factors as measures of anisotropy:mZm0=E0
1

and nZE0
2=E

0
1, where m0 is the shear modulus parallel to the foliation plane and E0

1 and E0
2 are the Young moduli along and across the

foliation, respectively. Normalized instantaneous inclusion rotation (u) is plotted as a function of the bulk tension direction (a) with respect

to the long axis of the inclusion, taking into account two parameters: (1) anisotropic factors m and n, and (2) the inclination of the foliation

plane to the long axis of inclusion (q). In the case of qZ08, u versus a variations are sinuous, showing maximum instantaneous rotation in

positive and negative sense at aZ45 and 1358, respectively, irrespective of m and n values. The magnitude of maximum u increases with

decrease in m, i.e. increasing degree of anisotropy in the matrix. On the other hand, decreasing the value of the anisotropic factor n results in

decreasing instantaneous rotation. u increases with the aspect ratio R of inclusion, assuming an asymptotic value when R is large. This

asymptotic value is larger for lower values of m. In case of qs08, u versus a variations are asymmetrical, showing maximum instantaneous

rotation at varying inclusion orientation for different m. For given m and n, with increase in q the sense of instantaneous rotation reverses at a

critical value of q.
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1. Introduction

One of the aspects in the structural study of inclusion-

matrix rock systems is understanding the rotational motion of

rigid inclusions and how that motion perturbs the flow of

matrix around them. Based on Jeffery’s (1922) theory, Gay

(1968) presented an analysis on the rotation of elliptical

inclusions as a function of their shape and orientation,

considering bulk deformation in pure shear. Ghosh and

Ramberg (1976) used the same theory in studying the rotation

behaviour for general type bulk deformations involving both

pure shear and simple shear. In their derivation they consider

the equation of instantaneous rotation for pure shear given by

Muskhelishvili (1953). Later studies (Freeman, 1985; Passch-

ier, 1987; Jezek et al., 1996; Mandal et al., 2001) have
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employed the general expressions of Jeffery it is possible to

analyse the rotation of inclusions either in two- or three

dimensions for any type of homogenous bulk flow.

Analyses based on either Jeffery’s or Muskhelishvili’s

theory are applicable to inclusions floating in a mechani-

cally isotropic matrix. In many geological situations, the

matrix show structural fabrics, e.g. foliations, lineations,

which are likely to induce mechanical anisotropy in the

matrix (Cobbold, 1976; Weijermars, 1992; Mandal et al.,

2000; Treagus, 2003; Fletcher, 2004). In spite of significant

development on the study of inclusion-matrix systems, there

is some lacuna in our understanding of how such anisotropy

in the matrix can influence the rotation behaviour of rigid

inclusions. In this paper we make an attempt, employing the

theory of elasticity, to understand the rotation behaviour of

single rigid inclusions embedded in an orthotropically

anisotropic matrix (Ramsay and Lisle, 2000). The results

obtained from the analysis are compared with those for an

isotropic matrix (Muskhelishvili, 1953) in order to show

variations of inclusion rotation as a function of the degree of

mechanical anisotropy in the matrix.
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2. Theoretical considerations
2.1. Measures of mechanical anisotropy

The elastic parameters of an orthotropic medium can be

described in two dimensions as:

a011 a012 0

a012 a022 0

0 0 a066

2
664

3
775 (1)

where a011Z1=E0
1, a

0
12Zn12=E

0
1, a

0
22Z1=E0

2 and a066Z1=m0.

E0
1 and E0

2 are the Young’s moduli along and across the

foliation, respectively (Fig. 1a and b). n12 is the Poisson’s

ratio. m0 is the shear modulus parallel to the foliation (Fig.

1c). In our analysis we consider two dimensionless

anisotropic factors (cf. Ramsay and Lisle, 2000):

mZ
m0

E0
1

and nZ
E0
2

E0
1

: (2)
2.2. General mathematical approach

Consider an elliptic cylindrical rigid inclusion within an

infinite orthotropic matrix (Ramsay and Lisle, 2000). The
Fig. 1. Definition of anisotropic factors m and n. E0
1 and E0

2 are Young’s

moduli of orthotropic matrix under tensile stresses (block arrows) acting

parallel and perpendicular to the anisotropic plane in (a) and (b),

respectively. m0 is the shear modulus of the matrix under shear stress

(block arrows) acting parallel to the anisotropic plane in (c).
cylindrical axis of the inclusion is assumed to lie on the

foliation. Our analysis will be in two dimensions, consider-

ing a section at a right angle to the inclusion axis, i.e.

parallel to the elliptic section of the inclusion. The semi-

axes of the inclusion on this section are a and b. A Cartesian

frame xy is chosen with the x axis along the a axis (Fig. 2).

The foliation is at an angle of q to the x-axis. The bulk

system is subjected to a far-field tension sN at angle a to the

a axis of inclusion. Following the conventional approach

(e.g. Muskhelishvili, 1953; Savin, 1961), we consider the

bulk state of stress as tensile. In some geological situations,

e.g. shear zones, rocks can deform under shear stresses. In

that case, analysis has to be made considering a shear stress

(tN) as the far field stress. Different constants defining the

bulk state of stress (Eqs. (A21a)–(A21c)) will thus change

accordingly (eq. 1.98 of Savin, 1961).

Considering a plane strain condition, the general

relations between stress and strain components can be

written as:
3x Z a11sxx Ca12syy Ca16sxy;

3y Z a12sxx Ca22syy Ca26sxy;

0Z a16sxx Ca26syy Ca66sxy

(3)
After transformation of the matrix (Eq. (1)) (Lekhnitskii,

1981; Chandrupatla and Belegundu, 2001), the elastic

parameters in Eq. (3) can be written in the form of

following equations:
a11 Z a011 cos
4
qC ð2a012 Ca066Þsin

2
q cos2 qCa022 sin

4
q;

a22 Z a011 sin
4 qC ð2a012 Ca066Þsin

2 q cos2 qCa022 cos
4 q;

a12 Z ða011 Ca022 K2a012 Ka066Þsin
2 q cos2 qCa012 ð4Þ
Fig. 2. A Cartesian coordinate frame oxy defined with respect to elliptical

inclusion. a and b are the semi-axes of inclusion. s is the angle of far-field

tension sN to the x axis, and q is the inclination of foliation (solid line) to

the x axis.
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a66 Z 4ða011 Ca022 K2a012 Ka066Þsin
2 q cos2 qCa066;

a16 Z ½2a022 sin
2 qK2a011 cos

2 qC ð2a012 Ca066Þ

!ðcos2 qKsin2 qÞ�sin q cos q;

a26 Z ½2a022 cos
2 qK2a011 sin

2 qK ð2a012 Ca066Þ

!ðcos2 qKsin2 qÞ�sin q cos q

In the plane theory of elasticity the stress components can be

expressed in terms of the Airy’s stress function U, satisfying

the following equation (Lekhnitskii, 1981):

a22
v4U

vx4
K2a26

v4U

vx3 vy
C ð2a12 Ca66Þ

v4U

vx2 vy2

K2a16
v4U

vx vy3
Ca11

v4U

vy4
Z 0

(5)

The general solution ofU (Eq. (5)) can be obtained using the

roots of the following characteristic equation:

a11s
4 K2a16s

3 C ð2a12 Ca66Þs
2 K2a66sCa22 Z 0 (6)

The above equation is quartic, which will have four roots,

for example, s1, s2, s3 and s4. It has been shown that all the

roots will be necessarily complex (eq. 20.22, Lekhnitskii,

1981), which can be expressed as:

s1 Za1 C ib1; s2 Za2 C ib2;

s3 Za1 K ib1; s4 Za2 K ib2
(7)

a1, b1, a2 and b2 are real constants, which depend on the

elastic parameter aij. The derivations of these constants are

given in Appendix A.1. Using Eq. (A9), their expressions

follow:

a1 ZK
G

2A
; a2 ZK

g

2A
;

b1 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AHKG2

p

2A
; b2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AhKg2

p
2A

(8)

The expressions of different parameters in Eq. (8) are cited

in Appendix A.
2.3. Governing equation for inclusion rotation

Savin (1961) has developed a fundamental equation

governing the instantaneous rotation of a rigid inclusion

hosted in an orthotropic matrix under a uniaxial tension. The

equation is obtained in a complex form (Eq. (A10)), which

is difficult to use for any direct analysis. We have done

considerable algebraic work with this equation (see

Appendix A), and obtained the instantaneous rotation rate

in the following form (Eq. (A24)):

UZ
ðF1R1 Ka1E1ÞK ðH1R2 Ka2G1Þ

ðD1R2 Ka2C1ÞK ðB1R1 Ka1A1Þ
(9)
where R1ZRCb1, R2ZRCb2. R is the aspect ratio (a/b) of

elliptical inclusion, a1, a2, b1, b2 are the roots of Eq. (6), the

expressions of which are given in Eq. (8). A1, B1, C1, D1, E1

and F1 are different constants and their values depend on the

elastic parameters (aij) and inclusion orientation a. The

algebraic expressions for these constants are given in

Appendix A (Eqs. (A17)–(A23)). It may be noted that, to

find the instantaneous rotation in Eq. (9) we first need to find

the roots in Eq. (8), for which all the preceding equations are

required. Again, the determination of constants in Eq. (9)

involves a set of equations derived in Appendix A. We

developed a program in Basic with the mathematical

equations, and the results obtained from the computations

are presented in the following section.
3. Analysis of inclusion rotation
3.1. Case 1: inclusion oriented along fabric (qZ08)

We first consider cases where the a axis of inclusion is

parallel to the foliation (i.e. qZ08, Fig. 2). The system is

subject to far-field tensile stress sN at varying orientation a.

In describing the instantaneous rotation of inclusion, U is

normalized to a011s
N and will be denoted as u. It is evident

that the instantaneous rotation uwill vary with a. In order to

show the effect of mechanical anisotropy we determined u

versus a variations, and compared them with that obtained

from the equation of Muskhelishvili (1953) for an isotropic

matrix:

UZ
sN

2m

R2 K1

R2 C1
sin 2a (10)

where m is the shear modulus, which in the present

nomenclature is 1/a66. It may be noted that for isotropic

materials the relation between the shear and Young’s

moduli is

m

E
Z

1

2ð1CnÞ
: (11)

The ratio will tend toward 0.33 when the matrix is

mechanically isotropic and incompressible (nZ0.5). It

therefore follows that the matrix is anisotropic if the factor

m is less than 0.33.

Using Eq. (9) we computed u–a variations for different

values ofm and n factors (Figs. 3 and 4). The plots show that

the normalized instantaneous rotation u will be a maximum

when the bulk tension direction is at an angle of 45 and 1358

to the long axis of inclusion, irrespective of the degree of

mechanical anisotropy, as in the case for isotropic matrix

(Eq. (10)). The inclusion remains stable when the bulk

tension direction is either parallel or perpendicular to the

long axis of the inclusion.

When m is 0.33, the magnitude of instantaneous

inclusion rotation is close to that obtained for isotropic



Fig. 3. Calculated plots of instantaneous inclusion rotation (u), normalized to a11s
N, as a function of bulk tension direction for different m values. Dashed line

represents the plot for isotropic matrix obtained from the equation of Muskhelishvili (1953). RZ3, nZ1, qZ08.
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matrix (Eq. (10)). For any inclusion orientation, the

instantaneous rotation shows a departure from the isotropic

value when m is less than 0.33 (Fig. 3). Decreasing m, i.e.

enhancing the degree of mechanical anisotropy, promotes

the instantaneous rotation in positive and negative direc-

tions for a!90 and O908, respectively. For example, the

instantaneous rotation is a maximum at aZ458, which is

less than 0.1 when mZ0.3. The maximum value exceeds

0.25 when m becomes less than 0.1. The theoretical results
Fig. 4. Variation of u with a for differe
suggest that the instantaneous rotation of rigid inclusions

during deformation of a rock can vary to a large extent due

to the foliated nature of the rock. For example, an obliquely

oriented inclusion within a massive bed rotates at a certain

rate under a bedding-parallel tensile stress. Inclusions of the

same orientation, but hosted in a foliated bed will rotate at

different rates, and the difference will be larger for higher

degrees of mechanical anisotropy imparted by the foliation.

The effect of anisotropic factor n, the ratio of Young’s
nt n values. RZ3, mZ0.1, qZ08.



Fig. 5. Calculated plots of u as a function of inclusion aspect ratio R for different m values. nZ1. Dashed line represents the variation for isotropic matrix. qZ
08, aZ458.
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modulus across and along the foliation, acts in the opposite

sense to m. For a given m, say 0.1, decreasing n lowers the

instantaneous rotation of inclusion (Fig. 4). The maximum

of instantaneous rotation at aZ458 is about 0.2 when nZ1.

The value decreases down to 0.1 when nZ0.2. However, the

effect of this factor on the inclusion rotation is not as strong

as in the previous one. Increasing the mechanical aniso-

tropic factor n from 0.2 to 1 lowers the instantaneous

rotation to half. In contrast, decreasing the anisotropic factor

m from 0.3 to 0.05 enhances inclusion rotation by more than

10 times. The numerical calculations suggest that changes in

the value of anisotropic factor m exert more effect on the

instantaneous rotation of inclusion, relative to that of

anisotropic factor n. m is a ratio of shear and Young’s

moduli with respect to the foliation. It seems that decreasing

m would increase shear strain component along the

foliation, which possibly results in higher instantaneous

rotation of inclusion oriented at an angle to the bulk tension

direction. On the other hand, the anisotropic factor n has less

effect in promoting shearing strain along the foliation, and

thereby brings about comparatively small changes in the

instantaneous rotation.

It is evident from Eq. (10) that the instantaneous rotation

is also a function of inclusion aspect ratio R, and that it tends

to assume an asymptotic value as R becomes very large (Fig.

5). By varying the anisotropic factor m, we investigated how

much the u versus R relation can show departures owing to

the foliated nature of the matrix. Plots of u–R for aZ458

and qZ08 reveal that an inclusion with RZ1, i.e. circular
shape, does not rotate when the matrix is isotropic. In

contrast, there is a finite instantaneous rotation when the

matrix is anisotropic. For a given value of m, the rotation

initially increases with increase in R, but becomes

progressively insensitive to R, and assumes a stable value,

as in the case of isotropic matrix. Instantaneous rotation of

an inclusion for varying R, overall, is larger for higher

degrees of anisotropy in the matrix. Secondly, when R is low

to moderate, the sensitivity of u to R increases with increase

in anisotropy, as reflected by the increasing gradient in u

versus R curves.
3.2. Case 2: inclusion oriented oblique to fabric (qO08)

We analysed the effects of foliation orientation on the

instantaneous rotation of inclusions (Fig. 6). The analyses

were performed considering u–a variations for different q,

where the anisotropy factors m and n were kept constant.

We first present results obtained for mZ0.05 and nZ1. The

plots show that the rotation behaviour can significantly

change depending on the foliation orientation under the

same stress condition. When qZ08, u varies sinuously with

a, and the variation is symmetrical, showing a maximum

and a minimum at aZ45 and 1358, and stable positions at

aZ0 and 908. The nature of variation changes with increase

in q. For qZ208, the curve is asymmetrical, showing stable

positions at aZ72 and 1288. The curve indicates that

inclusions with their long axis parallel or perpendicular to

the bulk tension direction can rotate, which is not possible if



Fig. 6. Influence of foliation orientation (q) on u–a variations. RZ3, mZ0.05, nZ1.
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the matrix is mechanically isotropic. Secondly, an inclusion

oriented at an angle of 128 to the tension direction will

experience rotation with maximum magnitude, whereas the

rotation in the negative direction will be maximum when

aZ1008. However, the latter will be much less than the

maximum positive rotation. With progressive increase in q,

the amplitudes of the curves and their positions vary,

implying changes in the rotation behaviour of rigid

inclusion. The sense of inclusion rotation varies with a,

defining fields of positive and negative rotation, which are

different for different foliation orientations (Fig. 7).

The effects of foliation orientation on the instantaneous

rotation of inclusion can be summarized as follows. (1)

Inclusions oriented parallel or perpendicular to the bulk

tension direction may not remain stable, as they would in an

isotropic matrix. (2) Inclusions oriented parallel to the bulk

tension direction will rotate in the positive direction if the

foliation is oblique and the magnitude of rotation will

increase to a maximum and then drop with further increase

in q. (3) Under the same stress conditions, inclusions of the

same orientation may show contrasting sense of rotation for

different orientations of matrix foliation. For example,

inclusions oriented at an angle less than 908 will always

rotate in the positive sense when the foliation is parallel to

the long axis of inclusion. On the other hand, inclusions of

the same orientation can rotate in the negative sense if the

foliation is at a high angle; say 708, to the long axis of

inclusion (Fig. 7). (4) Instantaneous rotation of inclusions

decreases as the angle between the foliation and the long

axis of inclusion increases. (5) The directions of bulk

tension with respect to the inclusion axis define the fields of

negative and positive inclusion rotation, which vary with the
foliation orientation (Fig. 7). (6) Inclusion orientation

giving maximum instantaneous rotation varies with foli-

ation orientation. The orientation is 458 when foliation is

parallel to the inclusion axis. The angle decreases with

increases in the foliation inclination, becomes zero when the

foliation inclination is about 408, and finally negative when

the inclination is larger than 458.

We performed a set of numerical runs considering n!1

and analysed how the anisotropy factor n can influence the

rotation behaviour of inclusion under varying foliation

orientations. The results obtained for nZ0.8 are presented

here (Fig. 8). The plots show that u versus a variations for

different foliation orientations are different when the

anisotropy factor n is introduced. The positions of the u–

a curves change as n becomes less than 1. For qZ08, the

curve is symmetrical, indicating equal fields of positive and

negative rotation in the ranges of a!90 and O908,

respectively. When q is increased to 108, the curve

becomes asymmetrical, showing positive rotation in a

narrow range of a (22–788), and negative rotation in a

wider range. The maximum value of instantaneous rotation

in the positive sense is much less compared with that of

negative rotation. u is a maximum at az508, in contrast to

458 when qZ08. With further increases in q, u–a curves

change drastically. They show negative rotation over a

narrow range of a (80–1008), which increases slightly with

increase in q. The maximum of this negative rotation

occurs when a is close to 908, whereas that of positive

rotation occurs when a is nearly 0. The magnitude of

negative rotation, overall, is much less than that of positive

rotation. The orientations of inclusions showing maximum

rotation in the positive and negative sense do not vary



Fig. 7. Fields for inclusion rotation in positive (stippled) and negative sense (blank) for different foliation orientation q. Dashed arrow indicates the direction of

far-field tension sN. Note that the lines separating the fields are the direction of tension in which the inclusions remain stable.
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significantly with q as well as the value of the anisotropic

factor n. The theoretical results imply that rigid inclusions

in foliated rocks will have a tendency to rotate largely in

the positive sense when the foliation orientation exceeds a

critical value (Fig. 9). It is found that there is a jump in the

position of u–a curves when q exceeds 108. We studied the

critical value of q where this drastic change occurs,
Fig. 8. A general case of u–a plots for different foliation or
considering the nature of u–q variation at aZ08. The plot

shows that u decreases monotonically with q, but jumps to

a large positive value, and then sharply drops to a low

value. The break point in u versus q curves separates the

fields of negative and positive rotation. A rigid inclusion

oriented parallel to the bulk tension direction will rotate in

the negative direction when the foliation is inclined at an
ientation q. See text for detailed description. nZ0.8.



Fig. 9. Plots showing variation of u with foliation orientation q under a given orientation of far-field tension (aZ0). (a) mZ0.05, nZ1 and (b) mZ0.01, nZ1.

Note that the sharp breaks in the curves indicate reversal in the sense of inclusion rotation.
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angle less than about 188 to the long axis of inclusion.

Under the same stress condition, the inclusion will rotate in

the positive direction if the foliation is oriented at angles

larger than 128. This critical q increases slightly with

decrease in n values.
4. Discussion

The analytical results presented in the preceding

sections suggest that mechanical anisotropy in the

matrix can lead to significant departures in rigid rotation

of inclusions obtained from the theory based on
isotropic matrix (Muskhelishvili, 1953). Under a given

bulk stress, the rotation of inclusions with the long axis

oriented parallel to the plane of anisotropy increases

with decreasing value of the factor m, ratio of shear and

Young’s moduli. Normalized instantaneous rotation

obtained for mZ0.33, i.e. isotropic matrix is 0.05,

which increases to 0.5 when the matrix is anisotropic

with mZ0.04. The results imply that the presence of

foliation in the matrix is likely to enhance inclusion

rotation in inclusion-matrix systems subjected to bulk

tension at an angle to the long axis of inclusion. On the

other hand, the anisotropic factor n, ratio of Young’s

moduli across and along the foliation, exerts a
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contrasting effect on inclusion rotation. For a given m,

the instantaneous rotation decreases with decreasing n.

However, the effect of m factor appears to be much

more dominant compared with that of the n factor.

In the kinematic analyses of inclusion-associated struc-

tures, such as foliation drag, porphyroblast trails, in

schistose or laminated rocks, inclusion rotation is generally

deduced from the theory based on isotropic matrix. For

example, normal and reverse drag of foliation in the

neighbourhood of a rigid inclusion have been explained

considering the relative rotation of inclusion to the foliation,

where the foliation is assumed to rotate like passive

markers. However, the foliation that defines the structures

itself imparts mechanical anisotropy in the rock, as reflected

in recent studies (Mandal et al., 2000; Treagus, 2003;

Fletcher, 2004). Our theoretical study indicates that

foliations in the matrix can modify the instantaneous

rotation behaviour of inclusion to a large extent and,

depending on the degree of mechanical anisotropy in the

matrix, the rotation of inclusion relative to the foliation can

show contrasting senses. Analysis of rotational structures in

foliated rocks and their use as kinematic indicators should

thus be made with care. A large population of inclusions

should be studied before conclusions are reached about the

overall sense of rotation.

Following Ramsay and Lisle (2000), we have

considered two factors m and n as measures of

anisotropy. The factor m is the ratio of shear and

Young’s moduli, which is comparable with d-factor

used in several recent studies (Honda, 1986; Weijer-

mars, 1992; Mandal et al., 2000; Treagus, 2003). d is

the ratio of shear and normal viscosity, which represent

the flow resistance of the viscous medium to shear and

normal stresses to the foliation, respectively. There is a

slight difference between the two parameters. The value

of d factor is one, whereas that of m factor will be a

function of n, if the rock is isotropic. Assuming the

isotropic material is incompressible, m will be 0.33, as

nZ0.5. However, both the factors imply similar

physical meaning. Lower values in both m and d

suggest higher degrees of anisotropy imparted by planes

of weakness, such as schistosity, laminations, where the

resistance to deformation under schistosity-parallel shear

stress is much less than that under schistosity along

tensile stress. The anisotropic factor n is equivalent to

the s-factor of Mandal et al. (2000), which is a measure

of anisotropy in viscosity across and along a linear

fabric. Both the parameters are a measure of anisotropy

in resistance to flow parallel and perpendicular to a

linear fabric. Our analysis with the n factor is also

relevant to the study of rotation of rigid inclusions in

lineated rocks. The theoretical results indicate that the

instantaneous rotation can show large departures from

that predicted for isotropic matrix if the lineation

imparts strong anisotropy in the matrix, and is at an

angle to the bulk tension direction.
The theoretical analysis presented in this paper is in two

dimensions, considering plane strain condition and the

rotation axis of inclusion along the direction of no-strain.

The rotation behaviour of rigid inclusions in three-

dimensional space is complex even when the matrix is

isotropic (Freeman, 1985; Passchier, 1987). In the case of an

anisotropic matrix, additional complexities are likely to

occur as the expression of anisotropy in 3D will be larger

than that given in Eq. (1) (Lekhnitskii, 1981; Ramsay and

Lisle, 2000). Our analysis assumes that the rotation axis of

inclusion lies on the plane of anisotropy. In natural

situations this may occur at an angle, and the rotation of

inclusion will depend on this angle. Evidently, our analysis

is based on ideal boundary conditions, but provides a first

hand idea on how the presence of foliation or lineation can

affect the instantaneous rotation of a rigid inclusion.

There are some limitations in the present theoretical

approach, which are discussed along the following points.

(1) The theoretical analysis deals with instantaneous

rotation of elongate rigid inclusions. In the analysis the

mathematical equation describing the rotation remains valid

till the foliation around the inclusion is planar. With

progressive deformation the foliation is likely to be distorted

to curved geometry, as the inclusion undergoes large

rotation, exerting a drag effect on the surrounding matrix.

It is not possible to utilize the theory to determine the finite

rotations of inclusion employing any iterative solution

method. The state of stress around the inclusion would

become complex, as the foliation defining the anisotropy in

the matrix assumes strongly curved geometry. Evidently, it

is a limitation of our analysis that the present theoretical

approach is applicable for small amounts of deformation.

However, the results obtained from the analysis clearly

reveal that the rotational behaviour of rigid inclusions in an

anisotropic system would differ from that in an isotropic

one. (2) Rigid inclusions are often associated with foliation

drags resembling fold structures. Several workers have

modelled the development of these structures employing

hydrodynamic theories (Masuda and Ando, 1988; Bjør-

rnerud, 1989; Jezek et al., 1999; Mandal et al., 2001). With

the help of an iterative method it is possible to simulate

complex fold structures on a foliation of passive nature. In

our analysis the foliation is assumed to be mechanically

anisotropic, and one can determine the curvilinear geometry

of the foliation employing the displacement functions given

by Savin (1961). However, it is not possible to simulate

complex fold structures in the vicinity of rigid inclusions

that are produced at large finite strains, as the functions will

no longer remain valid when the foliation surfaces become

curved following large rotations in rigid inclusion. (3) We

present this theoretical analysis considering that the

inclusion is coherent to the matrix. Incoherence may

develop at the inclusion-matrix interfaces. The degree of

incoherence would be an additional factor in determining

the instantaneous rotation of rigid inclusion in anisotropic

matrix (cf. Bjørnerud and Zhang, 1995).
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5. Conclusions

Based on the theoretical analysis we conclude our paper

with the following points:
(1)
 Shape fabrics, e.g. foliation, lineation, induce mechan-

ical anisotropy in the matrix, which can in turn influence

the instantaneous rotation of rigid inclusions under bulk

tensile stresses.
(2)
 For both an isotropic and an anisotropic matrix, the

instantaneous rotation of an inclusion varies as a sine

function of inclusion orientation with respect to the bulk

tension direction, showing maximum rotation in the

positive and negative sense at 45 and 1358, respectively.
(3)
 In the case of an anisotropic matrix, the magnitude of

maximum rotation depends on two anisotropic factors:

m and n, where m is the ratio of shear modulus and

Young’s modulus along the foliation and n is the ratio of

Young’s moduli across and along the foliation.

Decreasing m, i.e. increasing degree of anisotropy

enhances inclusion rotation. On the other hand, the
instantaneous rotation is comparatively less sensitive to

the anisotropic factor n, but shows a conspicuous

decreasing tendency with decreasing value of n.
(4)
 The orientation of the foliation with respect to the

inclusion is another crucial parameter in controlling the

rotation behaviour of rigid inclusions. Instantaneous

inclusion rotation shows asymmetrical variation with

the direction of bulk tension when the foliation is at an

angle to the long axis of inclusion. For a given m, the

sense rotation reverses at a critical foliation orientation.
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Appendix A

A.1. Solution of equation

In this section we present the method for obtaining the solution of quartic equations (Eq. (6)), which is the fundamental step

in the analysis presented in Section 2.2. Eq. (6) can be written into a brief form as:

As4 CBs3 CCs2 CDsCEZ 0; (A1)

where

AZ a11; BZK2a16; C Z 2a12 Ca66; DZK2a26; EZ a22 (A2)

To obtain the solution of Eq. (A1) we follow the method described by Neumark (1965). Eq. (A1) can be factorized into:

ðAs2 CGsCHÞðAs2gsChÞZ 0 (A3)

The coefficients G, H, g and h need to be determined, considering the resolvent cubic equation corresponding to Eq. (A1):

ax3 Cbx2 CcxCd Z 0 (A4)

where

aZ 1; bZK2C; cZC2 CBDK4AE; d ZKðBCDKB2EKAD2Þ (A5)

The coefficients of Eq. (A3) can be represented as:

GZ
BC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4Ax0

p

2
; H Z

CKx0

2
C

BðCKx0ÞK2AD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4Ax0

p ; gZ
BK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4Ax0

p

2
;

hZ
CKx0

2
K

BðCKx0ÞK2AD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4Ax0

p

(A6)

where x 0 is a root of Eq. (A4), the expression of which follows:

x0 Z
KbK2 cos cosK1 D

3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 K3ac

p

3a
(A7)

where
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DZ
27a2dC2b3 K9abc

2jb2 K3acj3=2
(A8)

It should be noted that all the roots of the quartic equation will be complex when the cubic equation has three real roots. Its

necessary condition is 0%D%1. The expression of x1 in Eq. (A7) is valid under this condition.

Once the constants in Eq. (A6) are determined, one can easily find the roots of Eq. (A3) considering quadratic equations:

As2 CGsCH Z 0 and As2 CgsChZ 0 (A9)

A.2. Derivation of equation for instantaneous rotation

Using the complex variable method in the plane theory of elasticity, Savin (1961) presented the instantaneous rotation (U)

of an elliptical rigid inclusion hosted in infinite orthotropic matrix in terms of complex functions as:

UZ
Re½iðQ2ðRK is2ÞÞKQ1ðRK is1Þ�

Re½iðP1ðRK is1ÞÞKP2ðRK is2Þ�
(A10)

where RZa/b, aspect ratio of inclusion and s1Za1Cib1, s2Za2Cib2. Re represents the real parts of the complex expressions

in the numerator and denominator. P1, P2 andQ1,Q2 are complex functions. In order to find the instantaneous rotation U in Eq.

(A10), the real and the imaginary parts of the expressions of these functions first need to be separated:

P1 Z
Rp2 C iq2

2ðp1q2 Kp2q1Þ
(A11)

In Eq. (A11) the parameters are complex. We have simplified them, and obtained their expressions as:

p1 Z I1 C iJ1; (A12)

where I1Z ða2
1Kb21Þa11Ca12Ka1a16 and J1Z2a1b1a11Kb1a16

p2 Z I2 C iJ2; (A13)

where I2Z ða2
2Kb22Þa11Ca12Ka2a16 and J2Z2a2b2a11Kb2a16

Similarly, the expressions of q1 and q2 follow:

q1 ZK1 C iL1; (A14)

where

K1 Za1a12 C
a1

a2
1 Cb21

a22 Ka26 and L1 Z b1a12 K
b1

a2
1 Cb21

a22

q2 ZK2 C iL2; (A15)

where

K2 Za2a12 C
a2

a2
2 Cb22

a22 Ka26 and L2 Z b2a12 K
b2

a2
2 Cb22

a22

Substituting the expressions in Eqs. (A12)–(A15) in the denominator of Eq. (A11), we have

p1q2 Kp2q1 ZMC iN; (A16)

where MZ I1K2KJ1L2K I2K1CJ2L1 and NZ I1L2CJ1K2K I2L1KJ2K1:

The real and the imaginary parts of the expression in Eq. (A11) then follow:

P1 ZA1 C iB1; (A17)

where

A1 Z
MðRI2 KL2ÞCNðRJ2 CK2Þ

2ðM2 CN2Þ
; B1 Z

MðRJ2 CK2ÞKNðRI2 KL2Þ

2ðM2 CN2Þ

Similarly, we have the expressions for P2 as:
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P2 Z
Rp1 C iq1

2ðp1q2 Kp2q1Þ
ZC1 C iD1; (A18)

where

C1 Z
MðRI1 KL1ÞCNðRJ1 CK1Þ

2ðM2 CN2Þ
; D1 Z

MðRJ1 CK1ÞKNðRI1 KL1Þ

2ðM2 CN2Þ

With the help of eq. 3.83 of Savin (1961), we have the expressions of Q1 and Q2 as follows:

Q1 Z
1

2ðp1q2 Kp2q1Þ
½B �0 fðRC is1Þðp1q2 Kp2q1ÞC ðRC i �s1 Þð �p1q2 Kp2 �q1ÞgC ðB �0 KiC�0ÞðRC i �s2Þð �p2q2

Kp2 �q2Þ� (A19)

Q2 Z
1

2ðp1q2 Kp2q1Þ
½B�ðRC i �s1Þð �p1q1 Kp1 �q1ÞC ðB �0 CiC�0ÞðRC is2Þðp2q1 Kp1q2ÞC ðB �0 KiC�0ÞðRC i �s2Þ

!ð �p2q1 Kp1 �q2Þ� (A20)

where B*, B* 0 and C* 0 are constants, which represent the far-field stresses. The expressions of these constants are:

B� Z sN
cos2 aC ða2

2 Cb22Þsin
2 aCa2 sin 2a

2½ða2 Ka1Þ
2 C ðb22 Kb21Þ�

(A21a)

B�0 Z sN
½ða2

1 Kb21ÞK2a1a2�sin
2 aKcos2 aKa2 sin 2a

2½ða2 Ka1Þ
2 C ðb22 Kb21Þ�

(A21b)

C�0 Z sN
ða1 Ka2Þcos

2 aC ½a2ða
2
1 Kb21ÞKa1ða

2
2 Kb22Þ�sin

2 a

2b2½ða2 Ka1Þ
2 C ðb22 Kb21Þ�

C
½ða2

1 Kb21ÞK ða2
2 Kb22Þ�sin a cos a

2b2½ða2 Ka1Þ
2 C ðb22 Kb21Þ�

� �
(A21c)

With the help of Eqs. (A12)–(A16), Eq. (A19) can be expressed as:

Q1 ZE1 C iF1; (A22)

where

E1 Z
Mðx1 Cx2ÞCNðy1 Cy2Þ

M2 CN2
and F1 Z

Mðy1 Cy2ÞKNðx1 Cx2Þ

M2 CN2

x1 ZB�½fMðRKb1ÞKNa1gC fðRCb1ÞðI1K2 CJ1L2 K I2K1 KJ2L1ÞKa1ðI1L2 KJ1K2 C I2L1 KJ2K1Þg�

y1 ZB�½fMa1 CNðRKb1ÞgC fðRCb1ÞðI1L2 KJ1K2 C I2L1 KJ2K1ÞCa1ðI1K2 CJ1L2 K I2K1 KJ2L1Þg�

x2 Z 2ðI2L2 KJ2K2Þ½B
�0a2 KC�0ðRCb2Þ�

y2 Z 2ðI2L2 KJ2K2Þ½B
�0ðRCb2ÞCC�0a2�

Similarly, Eq. (A20) can be written as:

Q2 ZG1 C iH1; (A23)

where

G1 Z
½Mðu1 Cu2 Cu3ÞCNðv1 Cv2 Cv3Þ�

2ðM2 CN2Þ
and H1 Z

½Mðv1 Cv2 Cv3ÞKNðu1 Cu2 Cu3Þ�

2ðM2 CN2Þ

u1 ZK2a1ðL1I1 KK1J1ÞB
�

v1 Z 2ðRCb1ÞðL1I1 KK1J1ÞB
�
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u2 Z ½B�0fðRKb2ÞðI2K1 KJ2L1 K I1K2 CJ1L2ÞKa2ðJ2K1 C I2L1 KJ1K2 K I1L2ÞgKC�0fðRKb2ÞðJ2K1 C I2L1 KJ1K2

K I1L2ÞCa2ðI2K1 KJ2L1 K I1K2 CJ1L2Þg�

v2 Z ½B�0fðRKb2ÞðJ2K1 C I2L1 KJ1K2 K I1L2ÞCa2ðI2K1 KJ2L1 K I1K2 CJ1L2ÞgCC�0fðRKb2ÞðI2K1 KJ2L1 K I1K2

CJ1L2ÞKa2ðJ2K1 C I2L1 KJ1K2 K I1L2Þg�

u3 Z ½B�0fðRCb2ÞðI2K1 CJ2L1 K I1K2 CJ1L2ÞKa2ðI2L1 KJ2K1 KJ1K2 C I1L2ÞgCC�0fðRCb2ÞðI2L1 KJ2K1 KJ1K2

C I1L2ÞCa2ðI2K1 CJ2L1 K I1K2 KJ1L2Þg�

v3 Z ½B�0fðRCb2ÞðI2L1 KJ2K1 KJ1K2 C I1L2ÞCa2ðI2K1 CJ2L1 K I1K2 KJ1L2ÞgCC�0fðRCb2ÞðI2K1 CJ2L1 K I1K2

KJ1L2ÞCa2ðI2L1 KJ2K1 KJ1K2 C I1L2Þg�

Substituting the expressions of P1 (A17), P2 (A18), Q1 (A22) and Q2 (A23) in Eq. (A10), and then considering the real parts of

the numerator and denominator of Eq. (A10), we have the instantaneous rotation:

UZ
½F1ðRCb1ÞKa1E1�K ½H1ðRCb2ÞKa2G1�

½D1ðRCb2ÞKa2C1�K ½B1ðRCb1ÞKa1A1�
(A24)
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